Функции нуклеоида бактерий

Нуклеоид бактерий: функции и методы выявления

В отличие от эукариот бактерии не имеют оформленного ядра, однако их ДНК не разбросана по всей клетке, а сосредоточена в компактной структуре, которую называют нуклеоидом. В функциональном отношении он представляет собой функциональный аналог ядерного аппарата.

Что такое нуклеоид

Нуклеоид бактерий — это область в их клетках, содержащая структурированный генетический материал. В отличие от ядра эукариот она не отделена мембраной от остального клеточного содержимого и не имеет постоянной формы. Несмотря на это генетический аппарат бактерий четко отграничен от цитоплазмы.

Сам термин означает «подобный ядру» или «ядерная область». Впервые эту структуру обнаружил в 1890 г. зоолог Отто Бючли, но ее отличия от генетического аппарата эукариот были выявлены аж в начале 1950-х годов благодаря технологии электронной микроскопии. Название «нуклеоид» соответствует понятию «бактериальная хромосома», если последняя содержится в клетке в единственном экземпляре.

Нуклеоид не включает в себя плазмиды, которые являются внехромосомными элементами бактериального генома.

Особенности нуклеоида бактерий

Обычно нуклеоид занимает центральный участок бактериальной клетки и ориентирован вдоль ее оси. Объем этого компактного образования не превышает 0,5 мкм 3 , а молекулярная масса варьирует от 1×10 9 до 3×10 9 дальтон. В определенных точках нуклеоид связан с клеточной мембраной.

В состав нуклеоида бактерий входят три компонента:

  • ДНК.
  • Структурные и регуляторные белки.
  • РНК.

ДНК имеет хромосомную организацию, отличную от эукариотической. Чаще всего нуклеоид бактерий содержит одну хромосому или несколько ее копий (при активном росте их количество достигает 8 и более). Этот показатель варьирует в зависимости от вида и стадии жизненного цикла микроорганизма. Некоторые бактерии имеют несколько хромосом с разным набором генов.

В центре нуклеоида ДНК укомплектована достаточно плотно. Эта зона недоступна для рибосом, ферментов репликации и транскрипции. Напротив, дезоксирибонуклеиновые петли периферической области нуклеоида напрямую контактируют с цитоплазмой и представляют собой активные участки бактериального генома.

Количество белкового компонента в нуклеоиде бактерий не превышает 10 %, что примерно в 5 раз меньше, чем в хроматине эукариот. Большая часть белков ассоциирована с ДНК и участвует в ее структурировании. РНК представляет собой продукт транскрипции бактериальных генов, которая осуществляется на периферии нуклеоида.

Генетический аппарат бактерий является динамическим образованием, способным менять свою форму и структурную конформацию. В нем отсутствуют характерные для ядра эукариотической клетки ядрышки и митотический аппарат.

Бактериальная хромосома

В большинстве случаев хромосомы нуклеоида бактерий имеют замкнутую кольцевую форму. Значительно реже встречаются линейные хромосомы. В любом случае эти структуры состоят из одной молекулы ДНК, которая содержит набор генов, необходимых для выживания бактерии.

Хромосомная ДНК укомплектована в виде суперспирализованных петель. Количество петель на хромосому варьирует от 12 до 80. Каждая хромосома является полноценным репликоном, так как при удвоении ДНК копируется целиком. Начинается этот процесс всегда из точки начала репликации (OriC), которая прикреплена к плазматической мембране.

Суммарная длина молекулы ДНК в хромосоме на несколько порядков превышает размеры бактерии, поэтому возникает необходимость в ее упаковке, но при сохранении функциональной активности.

В хроматине эукариот эти задачи выполняют основные белки — гистоны. Нуклеоид бактерий имеет в своем составе ДНК-связывающие белки, которые отвечают за структурную организацию генетического материала, а также влияют на экспрессию генов и репликацию ДНК.

К нуклеоид-ассоциированым белкам относятся:

  • гистоноподобные белки HU, H-NS, FIS и IHF;
  • топоизомеразы;
  • белки семейства SMC.
Читайте также:  Пост про; закатывания; тоддлеров от боли и

Последние 2 группы оказывают наибольшее влияние на суперспирализацию генетического материала.

Нейтрализация отрицательных зарядов хромосомной ДНК осуществляется за счет полиаминов и ионов магния.

Биологическая роль нуклеоида

В первую очередь нуклеоид необходим бактериям для того, чтобы хранить и передавать наследственную информацию, а также реализовывать ее на уровне клеточного синтеза. Иными словами, биологическая роль этого образования такая же, как у ДНК.

Другие функции нуклеоида бактерий включают:

  • локализацию и компактизацию генетического материала;
  • функциональную упаковку ДНК;
  • регуляцию метаболизма.

Структурирование ДНК не только позволяет молекуле уместиться в микроскопической клетке, но и создает условия для нормального протекания процессов репликации и транскрипции.

Особенности молекулярной организации нуклеоида создают условия для контроля клеточного метаболизма путем изменения конформации ДНК. Регуляция происходит за счет выпетливания определенных участков хромосомы в цитоплазму, что делает их доступными для ферментов транскрипции, или наоборот, втягивания внутрь.

Способы обнаружения

Существует 3 способа визуального обнаружения нуклеоида в бактериях:

  • световая микроскопия;
  • фазово-контрастная микроскопия;
  • электронная микроскопия.

В зависимости от способа подготовки препарата и метода исследования нуклеоид может выглядеть по разному.

Световая микроскопия

Для выявления нуклеоида при помощи светового микроскопа бактерии предварительно окрашивают таким образом, чтобы нуклеоид имел цвет, отличный от остального клеточного содержимого, — иначе эта структура не будет видна. Также обязательна фиксация бактерий на предметном стекле (при этом микроорганизмы погибают).

Через объектив светового микроскопа нуклеоид выглядит как бобовидное образование с четкими границами, которое занимает центральную часть клетки.

Методы окраски

В большинстве случаев для визуализации нуклеоида методом световой микроскопии используют следующие способы окраски бактерий:

  • по Романовскому-Гимзе;
  • метод Фельгена.

При окрашивании по Романовскому-Гимзе бактерии предварительно фиксируются на предметном стекле метиловым спиртом, а затем в течение 10-20 минут пропитываются красителем из равной смеси азура, эонина и метиленового синего, растворенных в метаноле. В результате нуклеоид становится фиолетовым, а цитоплазма — бледно-розовой. Перед микроскопией краска сливается, а препарат промывается дистиллятом и высушивается.

В методе Фельгена применяется слабо кислотный гидролиз. В результате освобожденная дезоксирибоза переходит в альдегидную форму и взаимодействует с фуксинсернистой кислотой реактива Шиффа. В итоге нуклеоид становится красным, а цитоплазма приобретает синий цвет.

Фазово-контрастная микроскопия

Фазово-контрастная микроскопия имеет большее разрешение, чем световая. Этот метод не требует фиксации и окраски препарата, — наблюдение происходит за живыми бактериями. Нуклеоид в таких клетках выглядит как светлая овальная область на фоне темной цитоплазмы. Более эффективным метод можно сделать, применив флюоресцентные красители.

Выявление нуклеоида при помощи электронного микроскопа

Существует 2 способа подготовки препарата для исследования нуклеоида под электронным микроскопом:

  • ультратонкий срез;
  • срез замороженной бактерии.

На электронных микрофотографиях ультратонкого среза бактерии нуклеоид имеет вид состоящей из тонких нитей плотной сетчатой структуры, которая выглядит светлее окружающей цитоплазмы.

На срезе замороженной бактерии после иммуноокрашивания нуклеоид выглядит как кораллоподобная структура с плотной сердцевиной и тонкими проникающими в цитоплазму выступами.

На электронных фотографиях нуклеоид бактерий чаще всего занимает центральную часть клетки и имеет меньший объем, нежели в живой клетке. Это связано с воздействием химических реактивов, используемых для фиксации препарата.

Функции нуклеоида бактерий

  • Главная
  • Микробиология
    • Что такое микробиология?
    • Предмет и задачи микробиологии
    • Систематика микроорганизмов
      • Определитель бактерий Берджи
      • Классификация бактерий Берджи
        • Таксономическая схема бактерий.
      • Классификация грибков
      • Классификация простейших
    • Основные этапы развития
    • История кафедры микробиологии СибГМУ
  • Морфология
    • Анатомия бак. клетки
      • Клеточная стенка
        • Грамположительные бактерии
        • Грамотрицательные бактерии
        • Кислотоустойчивые бактерии
      • Цитоплазматическая мембрана
      • Мезосомы
      • Цитоплазма
      • Жгутики
      • Рибосомы
      • Нуклеоид
      • Капсула
      • Плазмиды
      • Включения
      • Споры
      • Пили
    • Деление бактерий
    • Морфология микроорганизмов
      • Кокковидные
        • Микрококки
        • Диплококки
        • Тетракокки
        • Сарцины
        • Стрептококки
        • Стафилококки
      • Палочковидные
        • Энтеробактерии
        • Клостридии
        • Бациллы
        • Микобактерии
        • Франциеллы
        • Бордетеллы
        • Бруцеллы
      • Извитые формы
        • Вибрионы
        • Хеликобактерии, кампилобактерии
        • Спириллы
        • Спирохеты
      • Нитевидные
        • Актиномицеты
      • Риккетсии,хламидии,микоплазмы
        • Риккетсии
        • Хламидии
        • Микоплазмы
      • Микробов-эукариотов
        • Морфология грибков
          • Бластомицеты
          • Гифомицеты
        • Морфология простейших
          • Тип Sarcomastigophora
          • Тип Ciliophora
          • Тип Apicomplexa
  • Методы микроскопии
    • Световая микроскопия
      • Иммерсионная световая
      • Люминесцентная
      • Темнопольная
      • Фазово-контрастная
    • Электронная микроскопия
      • Обычный просвечивающий
      • Растровый
  • Методы окраски
    • Простые методы
    • Сложные методы
      • по Граму
      • по Цилю-Нильсену
      • по Ожешко
      • по Нейссеру
      • по Бурри
      • по Бурри-Гинсу
      • по Морозову
      • по Романовскому-Гимзе
  • Питательные среды
    • Дифференциально-диагностические среды
      • Среда Эндо
      • Среда Гисса
      • Среды Ресселя
      • Среда Клиглера
  • Главная
  • Микробиология
    • Что такое микробиология?
    • Предмет и задачи микробиологии
    • Систематика микроорганизмов
      • Определитель бактерий Берджи
      • Классификация бактерий Берджи
        • Таксономическая схема бактерий.
      • Классификация грибков
      • Классификация простейших
    • Основные этапы развития
    • История кафедры микробиологии СибГМУ
  • Морфология
    • Анатомия бак. клетки
      • Клеточная стенка
        • Грамположительные бактерии
        • Грамотрицательные бактерии
        • Кислотоустойчивые бактерии
      • Цитоплазматическая мембрана
      • Мезосомы
      • Цитоплазма
      • Жгутики
      • Рибосомы
      • Нуклеоид
      • Капсула
      • Плазмиды
      • Включения
      • Споры
      • Пили
    • Деление бактерий
    • Морфология микроорганизмов
      • Кокковидные
        • Микрококки
        • Диплококки
        • Тетракокки
        • Сарцины
        • Стрептококки
        • Стафилококки
      • Палочковидные
        • Энтеробактерии
        • Клостридии
        • Бациллы
        • Микобактерии
        • Франциеллы
        • Бордетеллы
        • Бруцеллы
      • Извитые формы
        • Вибрионы
        • Хеликобактерии, кампилобактерии
        • Спириллы
        • Спирохеты
      • Нитевидные
        • Актиномицеты
      • Риккетсии,хламидии,микоплазмы
        • Риккетсии
        • Хламидии
        • Микоплазмы
      • Микробов-эукариотов
        • Морфология грибков
          • Бластомицеты
          • Гифомицеты
        • Морфология простейших
          • Тип Sarcomastigophora
          • Тип Ciliophora
          • Тип Apicomplexa
  • Методы микроскопии
    • Световая микроскопия
      • Иммерсионная световая
      • Люминесцентная
      • Темнопольная
      • Фазово-контрастная
    • Электронная микроскопия
      • Обычный просвечивающий
      • Растровый
  • Методы окраски
    • Простые методы
    • Сложные методы
      • по Граму
      • по Цилю-Нильсену
      • по Ожешко
      • по Нейссеру
      • по Бурри
      • по Бурри-Гинсу
      • по Морозову
      • по Романовскому-Гимзе
  • Питательные среды
    • Дифференциально-диагностические среды
      • Среда Эндо
      • Среда Гисса
      • Среды Ресселя
      • Среда Клиглера
Читайте также:  7 лучших танцев для похудения

Микробиология

Предметом изучения микробиологии

Нуклеоид

По строению ядерный аппарат прокариотов значительно отличается от ядра эукариотических клеток. Он представлен нуклеоидом (генофором), который лишен оболочки и включает в себя почти всю ДНК бактерии. Бактериальная хромосома состоит из одной двунитевой суперспирализованной молекулы ДНК кольцевой формы плотно уложенной наподобие клубка. В отличие от эукариот нуклеоид бактерий не имеет ядерной оболочки, ядрышка, основных белков (гистонов) и не делится митозом. В нем содержится также небольшое количество РНК и белков. Наследственная информация у бактерий хранится в форме последовательности нуклеотидов ДНК, которая определяет последовательность аминокислотных остатков в молекуле белка. Каждому белку соответствует свой ген. Бактериальная хромосома содержит до 4000 отдельных генов. Размеры бактериальной хромосомы у различных представителей царства Procaryotae варьируют от 3х10^8 до 2,5х10^9 Д. Бактериальная клетка гаплоидна, а удвоение хромосомы всегда сопровождается ее делением.

Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК методами (по Романовскому-Гимзе). На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с ЦПМ или мезосомой, участвующими в репликации хромосомы.

Генетическая система бактерий представлена ядерными и внеядерными структурами. Кроме нуклеоида в бактериальной клетке имеются внехромосомные факторы наследственности – плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Clostridium perfringens. Электронная микроскопия. Клеточная стенка (КС) гладкая, не имеет закономерной слоистости. Цитоплазматическая мембрана (ЦМ) трехслойная, волнистая. В цитоплазме клетки видны петлеобразные мембранные структуры (МС). Нуклеоид (Н) имеет вид осмиофобной зоны, заполненной тонкими фибриллами. х120000.«Авакян А.А., Кац Л.Н., Павлова И.Б. Атлас анатомии бактерий, патогенных для человека и животных. М «Медицина».-1972.-183 с.»

Нуклеоид

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (ЦПМ)

ЦПМ толщиной составляет 7-10 нм окружает цитоплазму бактериальной клетки и состоит из двойного слоя фосфолипидов,нейтральных липидов, гликолипидов и др., функция которых – поддержание механической стабильности ЦПМ и придание ей гидрофобных свойств.

Мембранные белки (интегральные и периферические) асимметрично включены в бислой фосфолипидов, их подразделяют на структурные и функциональные (ферменты).

Читайте также:  Гиперпролактинемия – повышение уровня пролактина причины, жалобы, диагностика и методы лечения на са

Функции ЦПМ:

1) внутренний осмотический барьер, регулирующий избирательное поступление в клетку и выделение наружу различных веществ,

2) транспортная функция;

3) биосинтетическая активность;

4) энергетическая и дыхательная функции;

5) присоединение хромосомы и плазмид.

При инвагинации ЦПМ возникают внутриклеточные мембранные образования – мезосомы:

По расположению в клетке мезосомы:

2) ядерные (нуклеидосомы),

ВНУТРИКЛЕТОЧНЫЕ СТРУКТУРЫ БАКТЕРИЙ

Рибосомы (70 S состоят из РНК (60-65%) и белка (35-40%), являются местом синтеза белка.

Хроматофорыу фотосинтезирующих бактерийв виде трубочек, пузырьков, сдвоенных мембранных пластин – тилакоидов.

Хлоросомы – продолговатой формы структуры, в которых находятся бактериохлорофиллы.

Фикобилисомы– полусферические или палочковидные гранулы, расположенные на фотосинтетических мембранах, содержат водорастворимые пигменты – фикобилипротеиды.

Карбоксисомы(или полиэдральные тела) – четырех- или шестигранные включения содержат фермент рибулозодифосфаткарбоксилазу.

Газовые вакуоли (или аэросомы)состоят из газовых пузырьков и являются регуляторами плавучести водных бактерий.

Магнитосомыубактерий, обладающих магнитотаксисом.

ВНУТРИЦИТОПЛАЗМАТИЧЕСКИЕ ВКЛЮЧЕНИЯ БАКТЕРИЙ

Цитоплазма –среда, связывающая внутриклеточные структуры в единую систему. Цитозоль– полужидкая коллоидная масса из воды (70-80 %) , РНК, ферментов.

Запасные веществаобразуются в клетке в результате обмена веществ. По консистенции их делят на на жидкие (поли-β-оксибутират), полужидкие (сера) и твердые (гликоген):

1. Безазотистые органические запасные вещества

4. Углеводородные гранулы

5. Поли-β-оксимасляная кислота (поли-β-оксибутират)обнаружена только у прокариот

6. Полифосфаты (волютин, или метахроматиновые гранулы)

7. Включения серы

8. Включения карбоната кальция

9. Параспоральные включения

ГЕНЕТИЧЕСКИЙ АППАРАТ БАКТЕРИЙ

Нуклеоид

Особенности генетического аппарат прокариот:

1) ядра бактерий не имеют ядерной оболочки и ДНК находится в контакте с цитоплазмой;

2) нет разделения на хромосомы и нить ДНК называется бактериальной хромосомой;

3) отсутствует митоз и мейоз.

Ядерный аппарат бактерий называют бактериальным ядром, или нуклеоидом.

Бактериальная хромосома в форме замкнутого кольца – это гигантская суперспирализованная молекула ДНК, не связанная с гистонами. Репликация ДНК осуществляется полуконсервативно.

В цитоплазме – линейные или кольцевые молекулы внехромосомной ДНК– плазмиды (внехромосомные детерминанты),незамкнутые – релаксированные,замкнутые – сверхспиральные.

Основные свойства бактериальных плазмид:

– способность к автономной репликации. Плазмиды со строгим контролем репликациииослаблен­ным,

– конъюгативность (трансмиссивность) –спо­собность к самопередаче,

– фенотипические признаки, которые они придают бактериям: устойчивость к антибиотикам, катионам, анионам, мутагенам, бактериоцинам. Клетки с плазмидами способны вызывать биодеградацию веществ, синтезировать бактериоцины, гемолизин, фибринолизин, токсины, антигены, анти­биотики, инсектициды, пигменты, поверхностные антигены; приобре­тают способность к конъюгации; индуцируют опухоли у растений; осу­ществляют рестрикцию и модификацию ДНК.

Плазмиды могут объеди­няться друг с другом или с фаговыми ДНК, образуя коинтеграты.В одной клетке может находиться несколько типов плазмид. Если плазмиды не могут сосуществовать в одной клетке, их называют несовместимыми.

2) интегрированные репродуцируются одновременно с бактериальной хромосомой – эписомы.

Плазмиды:

1) трансмиссивные (F- и R-плазмиды), передаваемые при конъюгации;

Функцииплазмид:

1. Регуляторные компенсируют дефекты метаболизма, встраиваясь в поврежденный геном.

2. Кодирующие привносят в клетку новую генетическую информацию.

Виды плазмид:

1. F-плазмиды контролируют синтез F-пилей при конъюгации.

2. R-плазмиды – фактор множесственной лекарственной устойчивости.

3. Неконъюгативные плазмиды.

4. Плазмиды бактериоциногении – способности бактерий про­дуцировать специфические вещества (колицинами илибактериоцинами), вызывающие гибель бактерий филогенетически родственных видов.

5. Плазмиды патогенности контролируют вирулентные свойства.

6. Скрытые (криптические) плазмиды.

7. Плазмиды биодеградации.

Бактериальные плазмиды – объекты для изучения репликации и транскрипции ДНК, их используют в генной инженерии и селекции микробов.

Мигрирующие генетические элементы – отдельные участки ДНК, осуществляющие собственный перенос (транспозицию) внутри генома. Их виды:

1. Вставочные (инсерционные) последовательности (IS-элементы).

Ссылка на основную публикацию
Фталазол сравнить цены, инструкция по применению, отзывы, аналоги, купить Фталазол в Украине –
Фталазол-Здоровье: состав, показания, дозировка, побочные эффекты Данный препарат относят к группе сульфаниламидных противомикробных лекарственных средств, которые обычно применяют при в...
ФОРЛАКС – новый подход к лечению запоров Еженедельник АПТЕКА
Продукты от запора при беременности: что запрещено, базовое меню из разрешенных, рецепты Продукты от запора при беременности помогают без химических...
Форма кала и каким бывает стул при геморрое Все о геморрое
«САЙТ НАХОДИТСЯ НА РЕКОНСТРУКЦИИ ПРИНОСИМ СВОИ ИЗВИНЕНИЯ ЗА ВРЕМЕННЫЕ НЕУДОБСТВА» Государственный НаучныйЦентр Колопроктологии Ассоциация КолопроктологовРоссии На Главную О Нас Новости...
Фталазол-КМП инструкция по применению, показания
Фталазол инструкция по применению Противопоказания к применению Фталазола Запрещающими факторами для назначения и использования Фталазола являются: острый гепатит и почечная...
Adblock detector