Структура бактериальной клетки

Плазматическая мембрана растительной клетки (плазмалемма). Её структура

Общая характеристика.

Плазматическая (цитоплазматическая) мембрана — обязательный компонент любой клетки. Она отграничивает клетку и обеспечивает сохранение существующих различий между клеточным содержимым и окружающей средой. Мембрана служит высокоизбирательным «входным» селективным фильтром и отвечает за активный транспорт веществ в клетку и из нее. Цитоплазматическую мембрану растительной клетки обычно называют плазмалеммой. Как и любая биологическая мембрана, она представляет собой липидный бислой с большим количеством белков. Основу липидного бислоя составляют фосфолипиды. Помимо них в состав липидного слоя входят гликолипиды и стерины. Липиды достаточно активно перемещаются в пределах своего монослоя, но возможны и их переходы из одного монослоя в другой. Такой переход, называемый «флип-флоп» (от англ. flip-flop), осуществляется ферментом флипазой. Кроме липидов и белков в плазмалемме присутствуют углеводы. Соотношение липидов, белков и углеводов в плазматической мембране растительной клетки составляет приблизительно 40:40: 20. Мембранные белки связаны с липидным бислоем различными способами. Первоначально белки мембран разделяли на два основных типа: периферийные и интегральные. Периферийные белки ассоциированы с мембраной за счет присоединения к интегральным белкам или липидному бислою слабыми связями: водородными, электростатическими, солевыми мостиками. Они в основном растворимы в воде и легко отделяются от мембраны без ее разрушения. Некоторые периферийные белки обеспечивают связь между мембранами и цитоскелетом. Интегральные белки мембран нерастворимы в воде.

Как минимум один из доменов интегрального белка встроен в гидрофобную часть бислоя мембраны, поэтому интегральный белок, как правило, не может быть удален из мембраны без ее разрушения. В последнее время показано существование третьей группы белков, так называемых «заякоренных» в мембране белков). Эти белки фиксируются в мембране за счет специальной молекулы, в качестве которой могут выступать жирная кислота (ЖК), стерин, изопреноид или фосфатидилинозитол. Белки, связанные с изопреноидами (пренилированные белки) или жирной кислотой, обратимо соединяются с эндоплазматической (внутренней) поверхностью мембраны. Из жирных кислот чаще используется миристиновая (С14) или пальмитиновая (C16). В первом случае образуется амидная связь с терминальной аминогруппой глицина. К остаткам пальмитиновой кислоты белки присоединяются за счет тиоэфирных связей с цистеинами в С-конце полипептид­ной цепи. Для пренилирования белков обычно используется фарнезил или геранилгеранил, которые также присоединяются к остаткам цистеина в карбоксильном конце полипептида. В отличие от этих двух групп белков фосфати-дилинозитолсвязанные белки находятся с внешней (экстрацеллюлярной, или люменальной) стороны мембраны. Подобным образом, по-видимому, связаны с плазматической мембраной большинство арабиногалактановых белков. Холестеринсвязанные белки недавно были обнаружены в плазматической мембране животных клеток, но в растительных клетках подобные белки пока не найдены.

Особенностью липидного состава плазмалеммы по сравнению с другими мембранами растительной клетки является высокое содержание стеринов, но в отличие от плазматической мембраны животной клетки для плазмалеммы характерна высокая вариабельность их состава в зависимости от вида растения, органа и ткани. Например, у ячменя (Hordeum vulgaris) в клетках корня количество свободных стеринов превышает количество фосфолипидов более чем в два раза, тогда как в листьях фосфолипидов больше, чем стеринов почти в 1,5 раза. В листьях шпината (Spinacia oleracia) соотношение фосфолипиды: свободные стерины почти на порядок выше — 9:1.

Структурные особенности плазмалеммы. Помимо высокой степени вариабельности плазматическая мембрана растительной клетки имеет ряд структурных особенностей, отличающих ее от других эукариотических клеток.

Читайте также:  Болит колено к какому врачу идти, к кому обратиться

Жирнокислотный состав.

Основными жирными кислотами плазмалеммы являются пальмитиновая (16:0), олеиновая (18:1; Δ9), линолевая (18 : 2; Δ9,12) и линоленовая (18 :3; Δ9,12,15). Практически отсутствует стеариновая кислота (18:0) и полностью — арахидоновая (20:4; Δ5’8,11,14), характерные для мембран клеток животных и грибов. Известно, что арахидоновая кислота в очень низких концентрациях является мощным стимулятором фитоиммунитета для некоторых видов растений (например, обеспечивает устойчивость картофеля к фитофторе).

Набор стероидов.

В плазмалемме, как и во всех мембранах растительной клетки, почти нет холестерина. Его заменяют фитостерины, которые являются С-24-замещенными стеринами. Основные фитостерины — ситостерин, стигмастерин и кампестерин. Помимо свободных фитостеринов присутствуют значительные количества эфиров, гликозидов и ацилгликозидов стеринов, что не характерно для клеток животных.

Набор белков.

Наличие специфических белков, прежде всего арабиногалактанов (AGPs), обеспечивающих структурное и функциональное взаимодействие плазмалеммы с клеточной стенкой.

В состав цитоплазматической мембраны входят

Цитоплазматическая мембрана ( ЦПМ ) бактерии. Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство.

Цитоплазматическая мембрана ( ЦПМ ) играет важную роль в обмене веществ бактерий, играя роль осмотического барьера, контролирующего поступление и выход различных веществ из клетки. Иными словами, ЦПМ — физический, осмотический и метаболический барьер между внутренним содержимым бактериальной клетки и внешней средой.

Состав цитоплазматической мембраны бактерий

Как и многие биологические мембраны, цитоплазматическая мембрана ( ЦПМ ) состоит из двух слоев липидов и встроенных в лигшдную мембрану белковых молекул. В состав ЦПМ бактерий входят белки (20-75%), липиды (25-40%), углеводы и РНК (последние два компонента присутствуют в незначительных количествах). Компоненты цитоплазматической мембраны ( ЦПМ ) составляют около 10% сухого веса бактериальной клетки.

Белки цитоплазматической мембраны ( ЦПМ ) подразделяют на структурные и функциональные. Первые образуют различные структуры цитоплазматической мембраны ( ЦПМ ), вторые представлены ферментами, участвующими в синтетических реакциях на поверхности мембраны и в окислительно-восстановительных процессах, а также некоторыми специализированными энзимами (например, пермеазы). Липиды, входящие в состав ЦПМ, представлены насыщенными или мононенасыщенными жирными кислотами, но не стеринами, как у эукариотических клеток.

Транспортные системыцитоплазматической мембраны бактерий

Для цитоплазматической мембраны ( ЦПМ ) характерна выраженная избирательная проницаемость. В ней располагаются системы активного переноса и субстратспецифичных пермеаз. Некоторые белковые молекулы, «вкрапленные» в фосфолипидный бислой, играют роль «пор», через которые движется регулируемый поток веществ. У аэробных бактерий и анаэробов, способных к так называемому «анаэробному дыханию», в цитоплазматическую мембрану ( ЦПМ ) встроена система электронного транспорта, обеспечивающая её энергетические потребности. Самые крупные молекулы, способные проходить через цитоплазматическую мембрану ( ЦПМ ), — фрагменты ДНК.

Мезосомыцитоплазматической мембраны бактерий

Цитоплазматическая мембрана ( ЦПМ ) образует специфические инвагинаты — мезосомы, имеющие вид закрученных в спираль или клубок трубчатых образований. Мезосомы образуют поперечные перегородки между делящимися клетками; к ним обычно прикрепляется бактериальная хромосома.

Периплазматическое пространство

У некоторых бактерий между цитоплазматической мембраной ( ЦПМ ) и клеточной стенкой располагается периплазматическое пространство — полость шириной около 10 нм. Б периплазматическом пространстве имеются перемычки, соединяющие цитоплазматическую мембрану ( ЦПМ ) и пептидогликановый слой. Снаружи в периплазматическое пространство открываются поры клеточной стенки, изнутри в это пространство выходят некоторые клеточные ферменты (рибонуклеазы, фосфатазы, пенициллиназа и др.).

§ 12. Цитоплазматическая мембрана

Биология, 10 класс (Лисов, 2014)

Цитоплазматическая мембрана (плазмалемма) — основная, универсальная для всех клеток часть поверхностного аппарата. Ее толщина составляет около 10 нм. Плазмалемма ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ между клеткой и внеклеточной средой.

Основными компонентами мембраны являются липиды и белки. Липиды составляют около 40 % массы мембран. Среди них преобладают фосфолипиды.

Читайте также:  Гель Novartis Вольтарен Эмульгель (гель для наружного применения) - «Есть дешевый аналог

Молекулы фосфолипидов располагаются в виде двойного слоя (липидный бислой). Как вы уже знаете, каждая молекула фосфолипида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты — внутрь мембраны (рис. 30).

Кроме липидов, в состав мембран входят белки двух типов: интегральные и периферические. Интегральные белки более или менее глубоко погружены в мембрану либо пронизывают ее насквозь. Периферические белки располагаются на внешней и внутренней поверхностях мембраны, причем многие из них обеспечивают взаимодействие плазмалеммы с надмембранными и внутриклеточными структурами.

На внешней поверхности цитоплазматической мембраны могут располагаться молекулы олиго- и полисахаридов. Они ковалентно связываются с мембранными липидами и белками, образуя гликолипиды и гликопротеины. В клетках животных такой углеводный слой покрывает всю поверхность плазмалеммы, образуя надмембранный комплекс. Он называется гликокаликсом (от лат. гликис сладкий, калюм — толстая кожа).

Функции цитоплазматической мембраны. Плазмалемма выполняет ряд функций, важнейшими из которых являются барьерная, рецепторная и транспортная.

Барьерная функция. Цитоплазматическая мембрана окружает клетку со всех сторон, играя роль барьера — преграды между сложно организованным внутриклеточным содержимым и внеклеточной средой. Барьерную функцию обеспечивает, прежде всего, липидный бислой, не позволяющий содержимому клетки растекаться и препятствующий проникновению в клетку чужеродных веществ.

Рецепторная функция. В цитоплазматическую мембрану встроены белки, способные в ответ на действие различных факторов внешней среды изменять свою пространственную структуру и таким образом передавать сигналы внутрь клетки. Следовательно, цитоплазматическая мембрана обеспечивает раздражимость клеток (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.

Некоторые рецепторные белки цитоплазматической мембраны способны распознавать определенные вещества и специфически связываться с ними. Такие белки могут участвовать в отборе необходимых молекул, поступающих в клетки.

К рецепторным белкам относятся, например, антигенраспознающие рецепторы лимфоцитов, рецепторы гормонов и нейромедиаторов и т. д. В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию сложной системы маркеров, позволяющих отличать s.свои:/ клетки (той же особи или того же вида) от s.чужих:/. Благодаря этому клетки могут вступать друг с другом во взаимодействия (например, конъюгация у бактерий, образование тканей у животных).

В цитоплазматической мембране могут быть локализованы специфические рецепторы, реагирующие на различные физические факторы. Например, в плазмалемме светочувствительных клеток животных расположена специальная фоторецепторная система, ключевую роль в функционировании которой играет зрительный пигмент родопсин. С помощью фоторецепторов световой сигнал превращается в химический, что, в свою очередь, приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функций плазмалеммы является обеспечение транспорта веществ как в клетку, так и из нее во внеклеточную среду. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: простая диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке (рис. 31).

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалем-му могут проходить небольшие молекулы (например, Н20, 02, С02, мочевина) и ионы. Как правило, неполярные вещества транспортируются непосредственно через липидный бислой, а полярные молекулы и ионы — через каналы, образованные специальными мембранными белками. Простая диффузия происходит относительно медленно. Для ускорения диффузного транспорта существуют мембранные белки-переносчики. Они избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией. Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Читайте также:  Asphyxia Definition of Asphyxia at

Диффузия (простая и облегченная) — разновидности пассивного транспорта. Он характеризуется тем, что вещества транспортируются через мембрану без затрат энергии и только в том направлении, где наблюдается меньшая концентрация данных веществ.

Активный транспорт — перенос веществ через мембрану из области низкой концентрации этих веществ в область более высокой. Для этого в мембране имеются специальные насосы, работающие с использованием энергии (см. рис. 31). Чаще всего для работы мембранных насосов используется энергия АТФ.

Одним из наиболее распространенных мембранных насосов является натрий-калиевая АТ Фаза (Na + /K + — АТ Фаза). Она удаляет из клетки ионы Na + и закачивает в нее ионы К + — Для работы Ыа + /К + -АТФаза использует энергию, выделяемую при гидролизе АТФ. Благодаря этому насосу поддерживается разность концентраций Na + и К + в клетке и внеклеточной среде, что лежит в основе многих биоэлектрических и транспортных процессов.

В результате активного транспорта с помощью мембранных насосов происходит также регуляция содержания Mgr + , Са 2+ и других ионов в клетке.

Путем активного транспорта через цитоплазматическую мембрану могут перемещаться не только ионы, но и моносахариды, аминокислоты, другие низкомолекулярные вещества.

Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является транспорт в мембранной упаковке. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта — эндоцитоз и экзоцитоз.

Эндоцитоз (отгреч. эндон — внутри, китос — клетка, ячейка) — поглощение клеткой внешних частиц путем образования мембранных пузырьков. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал и захватывает его, заключая в мембранную упаковку (рис. 32).

Выделяют такие разновидности эндоцитоза, как фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости).

Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организма (поглощение лейкоцитами чужеродных частиц) и др.

Экзоцитоз (от греч. экзо — снаружи) — транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю среду. Например, пузырек комплекса Гольджи перемещается к цитоплазматической мембране и сливается с ней, а содержимое пузырька выделяется во внеклеточную среду. Таким способом клетки выделяют пищеварительные ферменты, гормоны и другие вещества.

1. Можно ли увидеть плазмалемму в световой микроскоп? Каковы химический состав ‘ и строение цитоплазматической мембраны?

2. Что такое гликокаликс? Для каких клеток он характерен?

3. Перечислите и поясните основные функции плазмалеммы.

4. Какими способами может осуществляться транспорт веществ через мембрану? В чем заключается принципиальное отличие пассивного транспорта от активного?

5. Чем отличаются процессы фагоцитоза и пиноцитоза? В чем проявляется сходство этих процессов?

6. Сравните различные типы транспорта веществ в клетку. Укажите черты их сходства и различия.

7. Какие функции не смогла бы выполнять цитоплазматическая мембрана, если бы в ее состав не входили белки? Ответ обоснуйте.

8. Некоторые вещества (например, диэтиловый эфир, хлороформ) проникают через биологические мембраны даже быстрее, чем вода, хотя их молекулы намного больше молекул воды. С чем это связано?

Глава 1. Химические компоненты живых организмов

Глава 2. Клетка — структурная и функциональная единица живых организмов

Глава 3. Обмен веществ и преобразование энергии в организме

Глава 4. Структурная организация и регуляция функций в живых организмах

Глава 5. Размножение и индивидуальное развитие организмов

Глава 6. Наследственность и изменчивость организмов

Ссылка на основную публикацию
Строение эукариотической клетки цитоплазма, клеточная оболочка
Клеточная мембрана в биологии виды, строение и функции (таблица) Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же...
Стоматология Эстет Дент Долгопрудный, Новый бульвар, 18 телефон регистратуры, электронная запись к в
Эстет Дент Про «Эстет Дент» Предложить изменения Сообщить о закрытии Стоматологическая компания «Эстет Дент» находится в г. Долгопрудный. В структуре...
Страдания позвоночника или Мифы и правда об остеохондрозе
Головные боли при остеохондрозе: быстро снимаем боль в домашних условиях Головные боли при остеохондрозе шейного отдела позвоночника — это распространенный...
Строение языка человека фото, в картинках и схема 1
Функции языка Язык — это не только система знаков, символически опосредующая мир человека, но и важнейший инструмент человеческой деятельности. коммуникативная;...
Adblock detector